
Microservices, SOA and APIs

Agenda

Defining microservices architecture

Is this different from Service Oriented Architecture (SOA)?

How is integration architecture changing? Where do

microservices fit in across the future landscape?

3

What is microservices architecture

Monolithic

application
Microservices

application

Microservice

(component)

Microservice

(component)

Microservice

(component)

A microservice is a granular decoupled component within a broader application

Agility

Scalability

Resilience

Simplistically, microservices architecture is about breaking down large

silo applications into more manageable fully decoupled pieces

Microservice

component

Microservice

component

Microservice

component

Encapsulation is key. Related logic and data should remain together, and
which means drawing strong boundaries between microservices.

Monolithic application

Microservices application

Silo

data

Heterogeneous on the inside, homogeneous on the outside

Freedom to choose runtimes,
languages, datastores etc.

• Wise to encourage preferred
technologies.

• Convergence often happens
naturally.

Commonality is in the framework
in terms of:

• Interconnectivity

• Scalability

• Resilience

6

Microservices application

Microservice

(Node.js)

Microservice
(Java +

MongoDB)

Microservice

(Go +
CloudantDB)

Why Microservices?

Small scoped, independent, scalable components

Scaling

Elastic scalability

Workload orchestration

Agility

Faster iteration cycles

Bounded context (code and data)

Resilience

Reduced dependencies

Fail fast

7

Microservices: Why now? (technical standpoint)

• Internet/intranet/network maturity

• Lightweight runtimes (node.js, WAS Liberty etc.)

• Methods & tools (Agile, DevOps, TDD, CI, XP, Puppet, Chef…)

• Lightweight protocols (RESTful APIs, lightweight messaging)

• Simplified infrastructure

• OS virtualisation (hypervisors), containerisation (e.g. Docker),

infrastructure as a service (IaaS), workload virtualisation

(Kubernetes, Mesos, Spark…)

• Platform as a service

• Auto-scaling, workload management, SLA management,

messaging, caching, build management.

• Alternative data persistance models (NoSQL, MapReduce, BASE,

CQRS)

• Standardised code management (Github, …)

8

Microservice

component

Microservice

component

Microservice

component

WAS
Liberty Node.js

What that might look like in IBM technology?

(simplistic representation – NOT a reference architecture!)

Monolithic application

Microservices application

DB2

Mongo

Db

Cloudant

Cloudant

Node.js

IBM Bluemix

(PaaS)

Message
Hub

(Kafka)

JSON/

HTTP

Microservice

Microservices inter-communication

Aim is decoupling for robustness

Messaging where possible
• Lightweight messaging

(e.g. AMQP, Kafka)

• Publish/subscribe

• Eventual consistency

Direct calls where necessary

Lightweight protocols

(e.g. JSON/HTTP)
• Load balancing/scaling via service

discovery

• Circuit breaker

• Caching

Microservices application

Microservice

Subscribe

Microservice

Message

Hub

API

Publish

API

JSON

/HTTP

JSON

/HTTP

Publish

Service

Discovery

Microservice

Microservice

Can everything become a microservice?
What about the things you can’t change?

• You can’t refactor all systems to microservices

• Most applications have an “if it ain’t broke, don’t fix it” policy

• Old systems may be unrealistic to re-engineer

• What if you can’t change the datastore?

• Are you doing microservices if your data remains in a silo?

• Can you manage without transactionality to the database?

• Will techniques like BASE, CQRS work?

• How do existing systems fit into a microservices architecture?

• How do you isolate yourself from their availability issues?

• What if they don’t scale as well as your microservices do?

12

Challenges with microservices

Automation
Automation is key to retaining agility: Test automation. Continuous integration and deployment
and more…

Managing and monitoring

How do you manage and monitor a vast network of microservices

Maintenance
Given the aim of freedom of language and runtime, will you have the breadth of skillsets to
maintain the microservices in the future.

Serialisation
Data has to get over the wire more often (however, serialisation has advanced massively in
recent years)

Latency
A request/response chained down a set of microservices must incur some extra latency from
network hops and serialisation.

Data sharing

Not all data can be split into a grid, some things are shared.

Real-time dependencies
What is the combined availability of all dependencies

Microservices calling other microservices synchronously need careful consideration.

Tends to creep, as one service built on top of another.

How does persistence work?

Pessimistic vs. Optimistic

How handle shared objects

Relational/NoSQL
ACID/BASE/CQRS/Event Sourcing?

13

Are we really doing microservices?

1. One codebase tracked in revision control, many deploys

2. Explicitly declare and isolate dependencies

3. Store config in the environment

4. Treat backing services as attached resources

5. Strictly separate build and run stages

6. Execute the app as one or more stateless processes

7. Export services via port binding

8. Scale out via the process model

9. Maximize robustness with fast startup and graceful shutdown

10. Keep development, staging, and production as similar as possible

11. Treat logs as event streams

12. Run admin/management tasks as one-off processes

15

12 factor apps

I. Codebase

II. Dependencies

III. Config

IV. Backing Services

V. Build, release, run

VI. Processes

VII. Port binding

VIII. Concurrency

IX. Disposability

X. Dev/prod parity

XI. Logs

XII. Admin processes

http://12factor.net

Are we really doing microservices or just aligning with some of the
microservices principles?

Consider the adoption paths of SOA, agile, devops etc. These often come with
an “all or nothing” message, but can you take on the whole package?

http://12factor.net/

Agenda

Defining microservices architecture

Is this different from Service Oriented Architecture (SOA)?

How is integration architecture changing? Where do

microservices fit in across the future landscape?

16

Common misconception resulting from the term “microservice”

Exposed services/APIs Exposed services/APIs

Microservices are just more fine grained web services

APIs are microservices

“micro” refers to the granularity of the components,

not the granularity of the exposed interfaces

x 1 x 3

x 4 x 4

Monolithic application Microservices application

Is “microservices architecture” is really

“micro-component architecture”?

SOA relates to enterprise service exposure *

Application

Service oriented architecture (SOA)

and microservices architecture relate to different scopes

µService
µService

µService
µService

Microservice

application

Microservices relate to

application architecture

* this simple distinction can be contentious depending on your definition of SOA

“Microservices, SOA, and APIs: Friends or enemies?”

What was SOA really about?

Integration or Components?

Opinion 1: “SOA is about how to achieve
integration often to aging complex back end
systems in order to expose services”

In this case SOA is primarily a connectivity

problem with little relationship to

microservices architecture and certainly at a

different scope.

Opinion 2: “SOA is about re-factoring your IT

landscape into components that better align with

the business needs and expose the services that it

requires”

System of
Record

Exposure Gateway

Integration Hub

Adapter Adapter

Exposed Services/APIs

System of
Record

Adapter

System of
Record

Here the connectivity problem is pushed down to

the applications and the focus of SOA is on

realignment of to the business needs. The service

components look more like applications, and we

might consider microservices as “more granular

SOA”, or even “SOA done right”.
Exposed Services/APIs

Adapter

System of
Record

Service
Component

Service
Component

Service
Component

Exposure Gateway

However, SOA, despite it’s broader intent, resulted mostly in interface related technology (e.g. WS-*, ESBs).

Microservices architecture is more specific on how components should be implemented, and benefits from more

real examples of frameworks, and platforms in this area than SOA did at an equivalent time in it’s history. 19

What does a large scale integration landscape look like

Systems of engagement

• Modern languages/runtimes

• Agile

• Simple modern connectivity

Systems of record

• Older technology

• Harder to change

• Harder to integrate with

“Systems of
Engagement”
Applications

Exposure Gateway (internal)

Integration Hub

Adapter Adapter

“Systems of
Record”

Applications

Mature large enterprise

(simplified)

Exposure Gateway (external)

Adapter Adapter

Integration Hub “Hub and Spoke”

integration

“Enterprise

Service Bus?”

“Web API

Gateway”

SOA vs APIs

E
n

g
a
g

e
m

e
n

t

A
p

p
li
c
a
ti

o
n

s

S
a
a
S

A

p
p

li
c
a
ti

o
n

B
u

s
in

e
s
s
 P

a
rt

n
e
r

S
y
s
te

m
s
 o

f

R
e
c
o

rd

B
u

s
in

e
s
s

P
a
rt

n
e
r

Exposure Gateway (external)

Green field online start-up
Much of landscape could be microservice based

The landscape is as (micro)service oriented architecture
21

Exposure Gateway (external)

Microservice

application

µService

µService

Exposure Gateway (internal)

Integration Hub

Adapter Adapter

µService

µService

µService

µService

µService

µService

µService

µService

µService

µService

µService

E
n

te
rp

ri
s
e
 B

o
u

n
d

a
ry

E
n

te
rp

ri
s
e
 B

o
u

n
d

a
ry

Adapter

Integration Hub

Mature large enterprise
Microservices are just one style of application

Exposing services is an integration and data challenge

Adapter

Mapping to example IBM products

23

S
y
s
te

m
s
 o

f
R

e
c
o

rd

(I
n

te
rn

a
l
c
o

re
 a

p
p

li
c
a
ti

o
n

s
)

Integration Hub

E
n

g
a
g

e
m

e
n

t

A
p

p
li
c
a
ti

o
n

s

M
ic

ro
s
e
rv

ic
e

a
p

p
li
c
a
ti

o
n

s

S
a
a
S

 A
p

p
li
c
a
ti

o
n

s

(e
x
te

rn
a
l)

Adapter

Externally Exposed Services/APIs

Exposure Gateway (internal)

Integration Hub

Adapter Adapter

Exposure Gateway (external)

B
u

s
in

e
s
s
 P

a
rt

n
e
rs

WebSphere
Application

Server (WAS)

IBM API Connect or

IBM Integration Bus

IBM Integration Bus

IBM Integration Bus

WAS Liberty,
Node.js, MongoDb,

Cloudant etc.

on IBM Bluemix

IBM API Connect +
IBM DataPower

Gateway

IBM API Connect

IBM MQ feeding

events IBM
Message Hub in

Bluemix, or IIB

talking directly to

Kafka APIs

Where might we see microservice principles in use going forward?

24

S
y
s
te

m
s

o
f
R

e
c
o

rd

Integration Hub

E
n

g
a
g

e
m

e
n

t

A
p

p
li
c
a
ti

o
n

s

M
ic

ro
s
e
rv

ic
e

a
p

p
li
c
a
ti

o
n

s

S
a
a
S

 A
p

p
li
c
a
ti

o
n

s

(e
x
te

rn
a
l)

Adapter

Exposure Gateway (internal)

Integration Hub

Adapter Adapter

Externally Exposed Services/APIs

Exposure Gateway (external)

B
u

s
in

e
s
s
 P

a
rt

n
e
rs

Agenda

Defining microservices architecture

Is this different from Service Oriented Architecture (SOA)?

How is integration architecture changing? Where do

microservices fit in across the future landscape?

25

Integration Domain

Enterprise Ownership Boundary

The Integration Domain of the Hybrid Enterprise

Dedicated Cloud Public Cloud SaaS

Customers Business Partners

Appl.

Appl.

Appl.

Appl.

Appl.

Appl.

Appl.

Appl.

Appl.

Appl.

On-Premise

Appl. Appl. Appl. Appl. Appl.

Local Cloud

Appl. Appl.

Application Application

Decentralising synchronous integration

E
n

g
a
g

e
m

e
n

t

A
p

p
li
c
a
ti

o
n

s

System
of

Record

Integration

Public API

Enterprise API

API Gateway

System
of Record System

of
Record

Integration E
n
te

rp
ri
s
e
 B

o
u
n
d
a
ry

Exposure Gateway (external)

SaaS
Application

Business
Partner

In a perfect world…

• Application teams self-

administer exposure of their

own APIs

• Application teams handle their

own integration needs

• Access to external APIs is

governed using the same

mechanisms used to govern

access to internal APIs.

• Application logic is firmly seated

with the application teams

• API monitoring/diagnostics

would be gathered consistently

across the organisation

• Security models would be

implemented more consistently

Application Application

So where is the ESB now?

Where might we find microservices here?

What about event driven integration?

What is an application boundary
in an microservices world?

Similar to application boundaries
today because

• Group related functionality

• Enable more coarse grained
ownership and responsibility (in
addition to full ownership at the
microservice level)

Different because

• Application sub-components
(microservices) are truly
independent.

• Application boundaries can be
easily changed – it’s primarily
about the right ownership

• Application boundaries can spread
across network boundaries (e.g.
between clouds)…but should they!

28

µService
µService

µService

µService

µService

µService

µService

µService

µService

µService

µService

Microservice

component

Inter-microservice vs. inter-application communication

M
ic

ro
s
e
rv

ic
e
s

a
p

p
li
c
a
ti

o
n

Microservice

component

Inter-microservice communication
• Lightweight protocols: HTTP,

application messaging

• Runtime component registry

• Client-side load balancing and circuit

breaker patterns

M
ic

ro
s
e
rv

ic
e
s

a
p

p
li
c
a
ti

o
n

Exposure Gateway

Inter-application communication
• Enterprise protocols: Managed API

gateways, enterprise messaging

• Design time developer portals

• Gateway load balancing and throttling

JSON/HTTP RESTful communication styles may
be present in both types of communication, but
their implementation may be radically different.

JSON/HTTP

Questions?

32

Thank You

32

